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Abstract—As far as the flow of the liquid film is concerned the film condensation of a binary mixture is similar
in many aspects to the Nusselt theory. The heat is removed by the film solely. In addition there takes place a
diffusional process within the saturated gas flow. It causes the transport of the more volatile component of the
mixture in the direction away from the interface. Despite the large number of dimensionless groups only a
few parameters are essential for the characterization of the flow. As a consequence processes involving very
different binary mixtures may be compared. In the present study laminar flows at a flat plate and between
parallel walls are considered only but the discussion of the essential parameters should be of more general

importance.
NOMENCLATURE Subscripts
C, mass fraction of volatile species; e, phase equilibrium;
Cp specific heat at constant pressure; i, liquid—vapour interface;
D, binary diffusion coefficient; 0, center of duct;
Gr, Grashof number; r, reference value;
g, acceleration of gravity; w, wall;
He, Stefan number ; 1,2, species.
h, enthalpy; .
K, nondimensional parameter, equation (38);  SUPETscript
thermal conductivity; -, condensate.

k,
L, length of the cooled wall;

m, molecular weight of species i;
m, rate of condensation per unit area;
Pr, Prandtl number;

p, pressure;
R, half width of duct;
Re, Reynolds number ;
Sc, Schmidt number;

T, temperature;

U, V, characteristic velocity components;

u, v, axial and normal velocity components;
X, Y, characteristic lengths;

x, y, axial and normal coordinates.

Greek symbols

B, Boussinesq factor;

I, dimensionless concentration, equation (42);

4, condensate film thickness;

A, ={CT) — CATo)}/{CAT) = C.T)},
equation (27);

0, dimensionless temperature, equation (6);

2 latent heat of vaporization;

IR dynamic viscosity;

v, kinematic viscosity;

o, density.

HMT 23:11 = A

1. INTRODUCTION

WHEN a saturated vapor is introduced onto a suf-
ficiently cooled wall, the condensate will be formed
adjacent to the surface of the wall, flowing downward
along the wall under the action of gravity. Usually, the
condensate is removed by making use of the gravity
flow along vertical walls, being an important device in
the chemical engineering field. The phases of the fluid
at the liquid-vapor interface may be assumed to be in
thermodynamic equilibrium. In the case of one-
component vapor, the equilibrium temperature, hence,
the temperature at the interface is a function of only the
system pressure. The amount of condensation onto the
wall is controlied only by the removal process of heat
released due to condensation at the interface through
the equation of energy.

For binary mixtures, the equilibrium temperature is
a function of species concentration as well as the
system pressure. The equilibrium concentration in the
phases will generally differ for each component. Re-
moval of the volatile component increases or decreases
the equilibrium temperature owing to the equilibrium
characteristics of the mixture. Due to the concen-
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tration difference, the liquid usually contains less of the
volatile component than does the vapor. In order to
maintain condensation at the interface, the volatile
component of the vapor adjacent to the liquid must be
removed from the interface. The process of mass
transfer controls this removal, whereas the equilibrium
temperature, hence, equilibrium concentration will be
determined by the energy transfer process. Out of these
two processes, which is the rate-controlling process
depends mainly upon the equilibrium characteristics.
When the equilibrium concentrations are highly sen-
sitive to the temperature, the heat transfer will be the
main process controlling the condensation. In most
cases, however, the mass transfer may be the rate-
controlling factor.

The equilibrium characteristics inherently pertain
to the mixture. As such characteristics proper to the
system play an important role, its physical behavior
tends to be less similar to those of other systems. Even
for quite different equilibrium characteristics, how-
ever, one can find some local similarities within
certain limits of the parameter range. Thus, from the
standpoint of application of the results as well as the
understanding of the phenomena, it is worthwhile to
examine the general behavior on the basis of the
similarity concept.

At high speeds of vapor flow, there occur large
disturbance waves and ripples at the liquid-vapor
interface in addition to the turbulence in the vapor
flow itself. Furthermore, liquid droplets may be torn
off from the liquid form and also be reentrained into it.
At further higher speeds, the characteristic time of the
flow becomes of matter in comparison with that of
condensation relaxation. In the present study, apart
from such highly complicated phenomena, similarity
aspects are considered for film condensation of la-
minar flows of binary vapor mixtures.

Flow characteristics also are attributive to flow
configurations. As for the configuration of vapor flows
of film condensation to cooled walls, following systems
are considered ; (1) forced flows in a ducted wall and on
anon-ducted wall, and (2) non-forced flows in a ducted
wall and non-ducted wall, Fig. 1. In the latter case,
vapor flows will be induced by the natural convection
due to density difference or by the shearing effect of the
condensate flow. The latter effect will be found to be of
little interest. In the present study, for simplicity, the
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ductis assumed to be of parallel walls. For divergent or
convergent walls, similar considerations may also be
taken with slight modifications. These flow-
configurations show different physical features to be
characterized by their own physical scales and proper-
ties [1-9], Fig. 2.

2. GOVERNING EQUATIONS

A saturated vapor mixture having the temperature
T, and the mass fraction of the volatile component C,
is introduced to a cooled wall located vertically, being
parallel to the direction of gravitational acceleration,
g. Distances from the start of cooling along the wall are
measured in terms of the x-coordinate, distances from
the wall are measured by the y-coordinate. Concerning
the similarity consideration, axisymmetric cylindrical
flows are equivalent to two-dimensional flows, hence
only two dimensional cases are considered here. The
corresponding velocity components in the x- and y-
directions are denoted by u(x,y) and u(x,y), re-
spectively. The wall is cooled isothermally at a con-
stant temperature T,,. The vapor condenses onto the
surface of the cooled wall and flows downward along
it, having the velocity components #, © and forming a
thin layer of the thickness & (x). The superscript ~
refers to the condensate.

As the characteristic lengths and velocities in the x-
and y-directions of the vapor flow and the condensate
flow,

X, Y, UV,
X, Y, UV,
are chosen and the reference physical properties are
denoted by subscript r. As for the x-coordinate, the
same scale may be used for the vapor and condensate
flows

X=X (1)

By nondimensionalizing the lengths, velocities and
physical properties with their corresponding charac-
teristic or reference values, it will be possible for them
to assume values of the order of magnitude unity. The
conservation equations of mass, momentum, energy
and species will be written in the form of the boundary-
layer approximation. In order to avoid unnecessary
complications the physical properties of the fluids such
as viscosity, conductivity etc. are assumed constant. Of
course, the variable properties could also be taken into
account, that is, being dependent on the temperature.
In such a case the nondimensionalized quantities must
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be the same function of the nondimensionalized tem-
perature in similar flows. With such assumptions the
representation becomes more complicated with less
increase in the essential information.

In terms of the nondimensionalized variables the
governing equations for the vapor are:

XVé
( u) + YUy (pv) =0; 2
\ xva( )
~—(puu +YU6 pou
2
_ P O eX XV v Tu gy
p,U? dx YU VY 8y
p = p(x); (3b)
d XV ¢
o (pub) + Y—Ua_y (pv0)
XV v 1820+c’p6C60' @
T YUVY Proyt  Scoydy’
d XV é XV v pdC
P T M e T S )

where p is the density nondimensionalized by the
reference density p,, p the pressure reduced by the
reference pressure p,, v the kinematic viscosity, ¢, the
difference of the specific heats of the species reduced by
that of the mixture: ¢, = (c,; ~ c,2)/c,- The Prandtl
number Pr and the Schmidt number Sc are
respectively

Gt =
Pr = P Sc= D
where ¢, is the specific heat of the mixture at constant
pressure, u the dynamic viscosity, k the heat con-
ductivity and D the binary diffusion coefficient of the
volatile component.
The nondimensional temperature

ST-T, 0 (6)
is defined in the same way both in the film and the
vapor. The last term of the energy equation, equation
(4), represents the energy transport due to the con-
centration diffusion of species having different specific
heats. In the present consideration, it plays no role in
the film because heat conduction is predominant and
no essential diffusion takes place. In the above equa-
tions, the second order effects of thermal diffusion,
kinetic energy, viscous and diffusion works and com-
pressible heating are ignored. A system of equations
similar to equations (2)— (5) holds for the film flow with

In order to apply the boundary -layer type equa-
tions, it is required that

(Y/X)? « 1, (Y/X)* « 1 )
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and

0. V3/p, « 1,5, V?/p, « 1. (8)

The uniform pressure across the flow passage of
vapor and liquid, equation (3b), implies:

p.=p- &)
Inspection of equation (2) yields
Xv Xv
YU YU

which allow the derivates to be of the order of
magnitude of unity.

Although for the right hand side of equation (10)
values near unity could also be taken, it would lead
only to unnecessary complications. The main con-
clusion is that the orders of magnitude of the different
characteristic scales are not independent. It is simpler
to fix them using equation (10).

With these conditions, the governing equations
(2)—(5) can be reduced to:

0
== (pt) + ——(pv) = (11)
0x oy
2 d
F™ (puu) + % (pvu)
p. 0p gX v u
T pU%ox +VY6 » (12
G G
I (pub) + o (pvB)
oy L629+c;,6C60. .
VY| Prdy?  Scoyoy| (13)
v p dC
— (puC) + — 4
7 () + (p O=Jrsea 9

which now contain the nondimensional parameters of
the vapor flow,

VY gX p,U?

— g—z, Pr ,Pr, Sc, ¢, =

v U* p o

1 "% 45

As for the liquid flow a similar group of parameters
is considered. Equations (11)—(14) are differential
equations of the second order with respect to y and
require two relevant boundary conditions.

3. BOUNDARY CONDITIONS

At the cooled wall the no-slip condition of velocity
and the temperature is assumed. Usually the wall
surface is impermeable to both components of the
mixture. These conditions give

u=0,0=
On the vapor side, two cases of boundary layer

conditions are considered, that of ducted walls and of a
non-ducted wall. For a ducted channel with walls
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situated at y = 0 and y = 2R,/Y, where 2 R, is the
distance of the walls:
ou 00 ac

—=0,—=0,—=0 aty=Ry/Y. (17
3y dy ay aty o/ (17a)
In the case of non-ducted walls, one can specify the

vapor conditions at infinity as

u=Uyn0=1C=Coaty—o. (17b)

At the liquid—vapor interface, no transition layer
from the vapor phase to the liquid phase is assumed.
The interface between the liquid and the vapor has an
infinitesimal thickness. The location of the interface is
expressed as

y = 4(x), y = 8(x). (18)

It should be noted that &(x) # &(x), since the film
thickness in the liquid and in the vapor is non-
dimensionalized by the different characteristic lengths
Y and Y, respectively. At the interface, the continuity
condition of u-velocity and temperature gives

Uui = Uﬁ,-,
9i= gis

(19)
(20)

where subscript i refers to the liquid—vapor interface.

The transport fluxes of mass, momentum, energy
and species from the vapor to the interface have to be
equal to these passing from the interface to the liquid
plus additional contributions due to sources at the
interface.

Assuming in accordance to the boundary-layer
condition equation (7) that

Y dé\? Y d6\?
- «,|=—] «1,
X dx X dx

the components of the unit vector normal to the
interface can be approximated by:

Y dé

n:———,

X dx

21

+1

The mass flow components of the vapor are:
pupU, pvp, V.

The mass of vapor condensing at the interface per
unit area and unit time, the so-called condensation rate
m, is equal to the negative normal component of the
mass flow.

. .Y dé
m = pup,U

— == pop,V.
X P

The same consideration can be taken for the liquid.
With equation (10) the following relation for the
condensation rate at the interface is obtained:

dé _{_d§
m= peri(uid_ - U,) = ﬁrV<ai— - 6:')1 (22)
b dx
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F1G. 3. Phase equilibrium diagram for ethanol-water mix-
ture at atmospheric pressure.

where the constant density of the liquid is assumed, p
= 1.

The condition that the frictional forces at the
interface have to be continuous gives

U 6u>__l7 6&)
“Y ayu'_u? v /)i

The heat released by condensation at the interface
must be carried away by heat conduction into both
phases. The heat conductivity of the liquid is one order
of magnitude greater than that of the vapor. Estimates
show that the former will not be compensated by a
greater temperature gradient in the vapor. Therefore
the heat transport takes place almost in the film only.
By denoting the latent heat of condensation of the
mixture in the liquid as 4 the boundary conditions for
the heat transport at the interface can be given by

k (06 A .
== 7m
Y 6)7 i TO - Tw

When as in the case of Fig. 3, the concentration of
the volatile component C; in the liquid at a certain
temperature is smaller than the concentration C; in the
vapor, an apparent source of the volatile species arises
at the interface. The difference (C; — C;) has to be
carried away by diffusion. The diffusion in the liquid
can be neglected in comparison with the diffusion in
the vapor.

This leads to the following boundary condition for

the concentration:
" 1 /éC
prpl' Y ay i'

Equations (19), (20) and (22)—(25) give the boundary
conditions at the interface.

(23)

(24)

(25)

4. PHASE EQUILIBRIUM

At the liquid—vapor interface, the mixture is as-
sumed to be in phase equilibrium. An example of a
phase equilibrium diagram is shown in Fig. 3 for
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ethanol-water mixture at atmospheric pressure. The
pressure changes in the vapor and therefore in the
two-phase flow are practically of no significance in
comparison with the temperature changes. The
equilibrium diagram, Fig. 3 can therefore be taken for
a constant pressure, i.e. p = po. The upper curve gives
the equilibrium concentrations of the vapor phase,
being denoted by C,(T), and the lower curve is that of
the liquid phase, C,(T). The liquid phase contains less
of the volatile component than does the vapor phase;
C.(T) < C,(T). Since no-transition layer between the
liquid and vapor phases is taken into account, the
mixtures cannot take concentrations between C,(T)
and C,(T), but only values of C,(T) and C(T);

Ci=C(T),C; = CAT). (26)

Thus, the vapor adjacent to the liquid must be stripped
of the volatile component from the interface by the
amount of m[C,(T;) — C(T;)}. The removal of the
volatile component is carried out by the diffusion
process, equation (25). The latter may be motivated by
the driving force of concentration difference between
the interface and the bulk, [C,(T;) — Co]. The conden-
sation rate should then be correlated with the ratio of
these concentration differences, which is an important
factor to characterize the condensation process. The
factor is denoted by

_ CAT) -G
CUT) = CATY
C(T,)-C
A, = L‘”)__L [v4))
CAT,) — C(T,)

The denominator means a barrier for condensation
from the vapor to the liquid and the numerator implies
a potential of the condensation.

5. CONDENSATE FLOW

Due to small density of the vapor compared with
that of the liquid, the condensate layer has usually very
thin thickness and small v-velocities. If the Reynolds
number based on these properties is assumed suf-
ficiently small the conditions of creeping flow are
valid:

VY _ VY _ VY
— <, Pr—«1,Sce—« 1.
v v v

(28a)

Hence the effect of convection terms in the governing
equations of condensate flow can be neglected. This
will be confirmed for the different cases later.

Of equation (3a), only terms on the right hand side
remain. The pressure term is very small in comparison
with the gravity term, because the pressure gradient is
the same as in the vapor. In non-ducted flows the
pressure is practically constant and in ducted flows the
pressure changes are of the order of magnitude of the
dynamic pressure, that is

)

14
Py a ~ prUz'
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The ratio of the first term to the second on the right
hand side of equation (3) for ducted flows is then
approximately :

(28b)

p_ % / 9X n U2
g0 ox | U p,gX
which can be neglected in the present cases. For higher
vapor velocities or in the case of divergent or con-
vergent ducted walls, this estimation has to be re-
examined. Within the approximations made in this
paper it is not necessary to take into account the
pressure term in the film flow.

Thus equations (3) to (5) for the liquid are reduced
to:

o*u Y

-9, (29a)
oy Uv

] Pr oCof
=l =T 29b
P A T (29b)
9*C

W = 0, (290)

which are subject to the boundary conditions at the
wall and at the liquid-vapor interface:

§=0:4=00=0—

y=8(x):a=u,0= 6,C= Ci=C[T). (30)
Equations (29) and (30) yield:
oy _1gP
i=iz= 5= 8y); (31a)
_ol.
6= ois, (31b)
C=C. (31c)

By these solutions, the boundary conditions at the
interface, equations (23) to (25) are written as

_ 1gY? uUY _[ou
- =—T—5 —_— ;

ST Y T ATY <6y>,- (322)
ko, 4 2
YS T,-T, (320)

. p.pD (0C
Ci-c)y=r2 (). 32
m( ) Y (6y), (32¢)

In equation (32a) the gravity term is the most
predominant in comparison with the right hand side
for usual cases. Considering the order of magnitude for
the terms of equation (31a) leads to

_ gY?
U=—,
s (33)
which combined with equation (10) gives:
_ g?
7=2_.
vX (34)



1410

Equations (33) and (34) correlate the characteristic
velocities (U, V) in the film to the characteristic lengths
.087)

Integrating the equation of continuity for the liquid,
equation (11) gives a useful relation for the y-
component velocity.

d5 . 4 [?
“idx T w= dx o

With the help of equation {31a) and (33), this gives:

_dé _ dféf/. 1
uia-;—'l)iwa;[:5<ui+égz)].

An insight into the film flow is now possible. In usual
cases, the shear stress of the vapor at the interface, the
right hand side of equation (32a) is very small com-
pared with that of the liquid, that is,

puUy

——— ],
auy

idj.

(35)

(36)

which will be checked later, when the vapor flow is
more specified. By using equations (33) and (36),
equations (32a) and (35) give the x and y component
velocities of the liquid at the interface, equation (37a)
and (37b) respectively. Further with equations (37a)
and (37b), equations (22) and (32b) lead to equations
{37¢) and (37d) which give the condensation rate and
the interfacial temperature, respectively.

i = 552; (37a)
F= — 252 z—f; (37b)
ﬁ'} =52 j—i; (37¢)

9, = %K,P %‘? (37d)

where He is the Stefan number defined by

To—Ty)

H:
¢ )

and K is a characteristic parameter for the liquid
defined by

VY gv*

= = 38

Ty X (38a)

In the case of one-component condensation, the

interfacial temperature can be regarded as one of the

specified quantities of the system namely 6; = 1. In

equation (37d) one can then put
He

K==

= (38b)

and solve equation (37d) to obtain all the aspect of
condensate flow — the Nusselt solution. On the other
hand, for binary mixtures, the controlling rate is how

S. Kotake and K. OSWATITSCH

much of the excessive vapor species can be
removed from the interface between the vapor and
liquid phases where the mixture is subjected to dif-
ferent equilibrium concentrations. Thus, the vapor
flow governs the condensation process mainly through
its behavior of mass transfer, as seen later. Neverthe-
less, it is convenient to introduce the parameter K, for
the purpose of estimating the interfacial temperature
as well as viewing a correlation between one and two
component systems. By further introducing a reference
temperature 8, at the interface so that 8, = 6, equation
(37d) is written as
0 Pr K, <3 d5

or HeG dx’

The reference temperature at the interface is then
given by
Pr
B, == K,.

o (3%9)

With the parameter K,, the characteristic scales of the
condensate flow can be expressed as

72X

7= K”“(
g

1/4
) 0 = Ki" Jign),

v - ke (20}
Plx

(40)

where K, is given by the energy transfer relation,
equation (38b), for the one-component system and by
the mass transfer relation, equation (59), for the two-
component system.

The characteristic values given by equation (40)
depend on the length of the film X and on the reference
temperature at the interface 6,. For the saturated one-
component flows 8, = 1, whereas for binary mixtures
the reference quantities of the film, ¥, U, V are smaller
than these for one-component flows of the equivalent
fluid under the same boundary conditions.

For the creeping flow conditions (28a) one obtains
from equations (38) and (39):

{

= K,Pr = He, 0,,

= K,;Pr

<]
- |
'155

Sc
Sc —ScKl—w-Hef}

w (@1
v

As an example assume the properties of water T, =
393°,¢, = lcalg™! grad, 2 = 500calg™' and cooling
of Ty — T, = 25° then one gets He = 0.05. The
Prandtl number at this temperature is relatively small
Pr=2. The film parameter for the one-component flow
(8,=1) is then K;=0025. Thus, the creeping flow
conditions are satisfied for 6, = 1, hence more
sufficiently for binary mixtures §, < 1. Only the third
condition (28) may cause difficulties for higher vapor
velocities, see equation {(60) and following, with respect
to the high Schmidt numbers of liquids, {Sc/Pr
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~ 300/2 = 150). But even if the third creeping con-
dition (28a) and equation (31c) are not fully satisfied,
the concentration gradient in the film is small in any
case and can be neglected in the boundary condition
(32¢) and consequently drops out of consideration.

Assuming a reasonable value of ¥ = 03 x
107 %m~ 257! (fe. water at 100°C)and alengthof X =
0.10 m equation (40} gives for the one-component flow
ofwater ¥ =07 x 107*mand U = 0, 16ms™!. As
already known from Nusselt theory the liquid film is
very thin and quite slow. This is important for the
boundary conditions of the vapor flow.

6. VAPOR FLOW

For the vapor flow, the condition of small Reynolds
numbers such as equation (28a) is too restrictive to
obtain the general feature of the problem. Usually it is
necessary to solve the full set of governing equations,
equations {11)~(14).

The natural convection term in equation (12},
pgX/U?, can be attributed mainly to the local vari-
ation of density due to temperature and concen-
tration differences. When the variation is not too large,
the effect is expressed by expanding the density about
the reference state with respect to temperature and
concentration according to Boussinesq’s
approximation

dp
=1 -8
p +(56)p c,( 1)

dp
— C-C
* (ac>p,9.r( ") *

For low Mach number flows, the influence of the
pressure change in the gravitational term can be
neglected in comparison to that of the density. From
the equation of state of an ideal gas the following
relation can be easily found

@)= "7
00 Jpcn T,

The molecular weight of the mixture of two perfect
gases is given by the relationship

1 l—C C
mom

mz
where m, is the molecular weight of the volatile

component.
This gives

ap __m-m "
aC rLbr my ny e

where m, is the molecular weight for the reference
concentration C = C,.

It is convenient to introduce for the concentration a
similar variable as for the temperature, equation (6):

C - Ce(Tw) Ce(Tw)

= ,
Co—C,T,) C,[T,)—Cq

(42)
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which takes values between 0 (at the walljand 1 (in the
free stream). Substituting these expressions of Jp/08
and 0p/3C into the expansion of p with T, =T,
6y =1)and C, = C, (I'y = 1) gives

TO Tw
—1=-2_"*(q-8
p—1 T, ( )
+ T (AT = Col(1 = T) + .
m, m;
=B(1=-0)+B(1~-T)+...; (43)
To""Tw mz_ml
= B = o[ CAT,) — Col.
ﬁr To ﬁ m;’”z 0[ ( ) 0}

The Boussinesq factor for the concentration, f,,
takes under certain conditions (Table 1) values of the
order of magnitude unity. In such cases considerable
changes of the vapor density will be associated with
this and f, becomes a significant parameter of the flow.

The static pressure gradientin equation (12)is given
by the relation:

P 0ps
p, Ox

If the pressure of the vapor is measured as the
difference from this static pressure caused by gravity,

ps, namely p’ = p — p,, the equation of motion
equation (12) is written as
0 0
3 (1) + 5 (o)
p opt gX v &u
= Tt (g = )t
ol TurP Uy e

In this equation of boundary-layer type, the con-
vective terms and the friction term are to be of the same
order of magnitude, that is,

VY
— =1 (44)
v
By introducing the new variables I" and p’ with
equations (43) and (44), the system of equations
(11)-(14) for the vapor flow is reduced to

0 d
- (pu) + N (pr)=0 (45a)

Ox

Pr 6;)

bé) ¢
™ (puu) + 3 (puv)= o U7 %

+8250-0)

2

gX &u
+h-—( ~T)+ —;
b, =D+ 5z @sh)

i) i)
™ {pud) + F™ (pv8)

1%
= }—);ﬁ + EPE [Ce(Tw) - Ce(TO)}

6F 66

P35 oy (45¢)
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2
a% (oul) + a% (pvT) = 'S%ZTI;' (@5d)

Additionally it should be noted that the density is
given by equation (43).

The boundary conditions at y = Ry/Y ory = oo,
equation (17a) or (17b), can easily be written in terms
of the reduced quantities. Before formulating the
boundary conditions for the vapor at the interface, the
condition which specifies the type of flow, namely of
forced convection, natural convection and of shear
induced flow will be considered.

Natural convection has to be of significance, if the
relevant terms in equation (45b) are of the same order
of magnitude that is,

gX

‘i—]?=1.

B (46)

In this equation, f§ can be replaced by the Boussinesq
factor B, for the predominant influence of the tempera-
ture or by B, for that of the concentration, equation
(43).

For a binary mixture of water-ethanol (m, = 18,
m, = 46) at atmospheric pressure and a saturation
temperature of Ty — 273 = 95°C, one gets C; =
C{Ty) = 0.35, my = 28.8. This gives the values of the
factor for various wall-temperatures shown in Table 1.

It is seen from Table 1 that binary mixtures of
species having a great difference of molecular weight
take considerable large values of B. According to
equation (46), the characteristic reference velocity for
natural convection in the vapor is given by

U = /(BgX), (47)
where B is the largest one between 8, and p.. Vapor
flows induced by the shear stress of the condensate
flow are possible only if it overwhelms natural con-
vection, that is, U » /(BgX). In view of the second
equation (40), this means

B« K, 48)

which is rarely realistic. Therefore, the case of shear-
induced flows can be excluded from the present
consideration, as mentioned in the introduction.

In usual cases of forced flow or natural convection,
one can find U « U. The vapor velocity is then
assumed to vanish at the interface. For forced flows,
the characteristic velocity of the vapor is chosen as

U=U, (49)

where U, is the specified velocity at the inlet of ducted
walls or the free stream velocity of the flow along the
plate. Thus, pure forced convection can be assumed

only if:
X PaX
K, \/((’f) ) \/(-gg) « 1. (50)
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For small values of 8, K; « 1, that is, natural
convection in the vapor can be neglected. If K is of
order of magnitude unity, natural convection becomes
comparable with the forced flow. In this case, it may be
significant whether the vapor flow is directed to or
against the direction of gravity.

In the following, for the vapor flow specified, two
cases will be considered; (a) forced flow, K, « 1, and
(b) natural convection flow, K; > 1. In each case, two
types of the flow configuration are considered; (1)
ducted flow and (2) non-ducted free flows. For ducted
flows, the characteristic length Y can be taken as the
magnitude of Ry; (1) Y = R,. For free flows along a
plate the order of magnitude of X can be considered
the length of the plate L; (2) X = L. The combined
configurations of vapor flow are listed in Table 2.

If ¥ is eliminated from equations (10) and (44) one
gets:

Y2 oy 51
X U 61

With these relations in Table 2 and of equation (51),
the characteristic quantities, X, Y, U can be easily
calculated as shown in Table 3.

In the case of forced flows the Reynolds number

Reg = UyRy/v or Re;, = UyL/v

appears in the expression of unspecified characteristic
lengths. For natural convection the Grashof number

Grg = BgR3/v? or Gr, = BgL*/v?

appears. It may be practically of advantage to in-
troduce the Grashof number in the relation for Uin 1b.

For ducted flows, a certain starting length X, exists
over which the boundary layer on the walls grows to
occupy half the duct width. In contrast to free flows
along a plate, the velocity at the center increases axially
owing to the displacement effect of the boundary
layers. Nevertheless X, can be estimated quite well by
putting Y equal for the ducted and for the free flow.
With L = X, one obtains, for forced and natural
convection flows respectively,

X, _UgRq | X,

. bl BgR3

2
R, v

(al) (52)

R,
In the present case, both the Reynolds number and the
Grashof number based on R, are large. This means
that the flow in the starting length X, is of importance
for ducted flows. At the same time it means that the
condition (7) for the vapor is satisfied already at the
starting length X, and hence is better for the region in
greater lengths of the duct.
For free flows, one gets from Table 3:

Y vy \172 ¥ y2 \i
@2 Z“(‘rﬁ) 6 fz(ﬁ—giﬁ)

I
’

(53)
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Table 1. Boussinesq factors and A,, equation {27), for water—ethanol mixture

Tw —-273 Ce(Tw) [CQ(TW) - CO] Bc Bt Cz(Tw) [Ce(Tw) - Ce(Tw)] Aw
95 0.35 0 0 0 0.06 0.29 0
90 0.56 021 0.200 0.014 0.14 0.42 0.50
85 0.70 0.35 0.340 0.027 0.31 0.39 0.90
80 0.83 0.48 0.420 0.041 071 0.12 4.00
Table 2. Vapor-flow configurations
(a) Forced (b) Natural
U=U,  U=.(fgX)
(1) Ducted Y=Rg ay b,
(2) Free X=L a, b,
Table 3. Characteristic quantities of the vapor flow
{a) Forced {b} Natural
X Y U X Y U
(1) Ducted RoRey R, U, RyGry R, V(BgR,)Grk*
(2) Free L LRe; ' U L LGrit# \/(ﬂyL)
where the Reynolds number and Grashof number are 7. CONDENSATION RATE AND INTERFACE
TEMPERATURE

based on L. Assuming thatv = 0.2 x 107 *m?s™ %, U,
=10ms !, L =0.10m,8 =020m,g = 10ms~%, one
gets for the two cases, respectively

@2) Y/L=050x10"%; (b2) Y/L=2x10"2

Also in this case the condition (7) for the boundary-
layer type flow is satisfied.

A comparison of Y with ¥(the latter was calculated
on the end of the last chapter to ¥ = 0.7 x 107*m)
shows that, only for Reynolds numbers near the
critical value, the boundary layer thickness of the
vapor flows can become comparable with the thick-
ness of the film layer. In that case the ordinate y of the
vapor may be measured from the interface. In general,
however Ycan be neglected against Y in the vapor. The
boundary condition for the vapor flow at the interface
can then be given simply by

2

y=0:u=v=0 (54)

Since for ducted flows, ¥/R, « 1, the boundary
condition equation (54) is a very good approximation.
With equations (27) and (42), equation (32¢) is

reduced to

o= 5V 'é_w‘;ce(’rw) - Ce(Tw) 911 .

Y Sc CAT)—CAT) \dy/)’
where A, is an important parameter of concentration
given by equation (27) at the wall temperature T, and
Sc is the Schmidt number of the vapor. The ratio of
concentration differences at the wall and the interface
Q = Ce(Tw) - Ce(Tw)
. Ce(Ti) - Ce(Ti)

usually takes values close to unity as shown in Fig. 3.

(33)

(56)

A comparison of the condensation rate expressed by
the properties of the film flow, equation (37¢), with that
expressed by the properties of the vapor flow, equation

(55) and (56), leads to
ar
o s o)

3293 _p v A,
dx
In usual cases of practical importance, the interface
temperature is very close to the wall temperature, or in
other words, 8,, the reference value of §,, is quite small,
Q.: = 1. Bstimate of the order of magnitude of the
terms in equation (57) leads to

67

o, v Aw

— =T = 1,

2, VY Sc (58)
which gives the order of magnitude of ¥ Using
equation (40) for ¥ and equation (51), the parameter
K, can be expressed by the fluid properties and the

vapor-flow condition as follows:
>1 /3

473 /uN\213 /772
()"
V gX

pr Sc

The flow parameter in equation {59) U%/gX is listed
in Table 4 for each flow configuration.

By equations (40) and (59) with the value of U%/gX
in Table 4 and Table 3 the characteristic values of the
condensate flow, ¥, U and Vare obtainable (Table 5).
The reference temperature at the interface is defined by
equation (39) so that 8, & 6, can be then given by

O Cr G -
o, Sc g9

(59

T,-T, Pr
T,— T, He

v

6, =

v
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Table 4. Flow parameter U?/gX

(b} Natural

(a} Forced
(1) Ducted Uov/ (R3 9)
(2) Free UZ/(Lg)

B
B

Table 5. Characteristic properties of condensate flow

(b) Natural

o

(a) Forced
- A 173
(1) Ducted ¥ (JE §5> R,
Sc pu Gr
~ A“‘ﬂ 2:3 Gr>1i3§
U =2y () -u
(Sc ;I) (Re, v
- A, p, v
V .
SC ﬁr R()
UgsR,y = R3
Re = % Gr = %‘i
N A ) R 1/2N\1:3
(2) Free 7 b L
Scpu Gr
o A, u)“ (G_r vy U
Sca) \RY) v
7 Bep¥ o
Scp, L
UL . gbL?
Re = —Gr = 5
v v

Aw G 13
(BnGr)”,
Se @ Gr

s /

A, 3
(J};Gr> Gri??

Se i Rq
Ay p v
Sc p, R,
B9RS - gRY
Gr = T Gr = T
¥
({Aw u Grl ANL3 L
\Sc i@ Gr
23 -
(ﬁﬁ_Gr"") Gris
Sc L
BubrV e
Se p, L
BgLl? .. gL’
Gr = =
r v2 ‘72

With the same values as for the example following
equation (41), He = 0.05; Pr = 2 and reasonable
values §,/p, = 1.6 x 10%; v/v = 80; A,/Sc = 1, one

gets:
U\
f,=4x10"2 (——-——) .
gX

This means that for forced flows at a plate of the length
L =010mand U, = 100ms ™", 6, will no longer be
small. But this is flow near the critical Reynolds
number, which requires further special consideration.
As shown by Kotake [8], 8, will be small in general.
Small values of 8, mean that the condensation rate is
dominated by the diffusion process in the vapor and as
a consequence the condensation rate will essentially be
smaller than that for one component flows with the
same cooling condition. Substituting equation (58)
into equation (57) with Q,,; = 1, (8, « 1) leads to

.dé for
oy /i

dx
It implies that the film thickness & for binary mixture
condensation should be controlled by the concen-
tration gradient at the interface. This is the most
contrasting feature to that for one-component con-
densation. In the latter, the film thickness is governed
by equation (37d) with equation (38b)

dé
#2=0,
dx

(61)

For free laminar flows along a flat plate, (81/3y): ~
J/x. From equation (61), § ~ /x. When (oI/dy) =
constant, as in the case of fully developed ducted flows,
§ ~ 3/x. On the other hand for one component flow,
f; = 1, the above equation leads to & ~ *,/x, which is
the result of the Nusselt film theory.

Strictly speaking, the concentration gradient at the
interface is a function of the x-coordinate, the Schmidt
number Sc and the interfacial temperature 6, The
latter involves the parameter #, = PrK,/He. Thus, the
gradient can be expressed in the form

ar _ _
(ﬁy ) =[x, Sc, PrK,/H ).

In the case for small difference between wall and
interface temperatures, 6, « 1, hence according to
equation (39) PrK,/H = 0, the concentration gradient
can be evaluated at the wall temperature and at y = 0.

ar
5—y o = fw(x, Sc}.

With equation (55) and Table 3 one can obtain the
following expressions of the condensation rate in m/5V
for four different cases of flow configuration.

(62)

1a. Ducted wall, forced convection

Sc

ReA—w'- Puf s (x, Sc);

mRQ Sc N m

Py Aw a prUO
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Re:M‘l‘
v s

’

X

x= ,
Ry .Re

(63)

where the vapor density can be evaluated at wall
temperature (6§ = 0, I' = 0) according to equation
43):

pw=1+B+B (64)
and can be quite different from one, Table 1.
1b. Ducted wall, natural convection
MRy S_c — i 112 S_c
Py Aw pr\/(ﬁgRO) Aw
= p.f,,(x Sc);
R3
Gr = Bg A 0 :
v
X
= . 65
x R,Gr (65)
2a. Free (plate), forced convection
l.'_ L v S_c - _m_ Rel’? §£
prv UOL Aw prUO Aw
= pufi (. 50);
U,L
Re=—1 ;
v
X (66)
x=—,
L
2b. Free (plate), natural convection
", <L>m Se__ M oauSe
pv \BgL®) A,  p/(BgL) A,
= pufu (x, Sc);
L3
Gr = ﬂgz ;
v
_X )
x = T

In the case of forced convective flows (1a) and (2a)
the Reynolds number Re is involved in the factor of the
condensation rate. For natural convection flows (1b)
and (2b), the Reynolds number is replaced by the
Grashof number Gr. The factor includes the para-
meters as a product, and they form a new parameter.
The parameter, A, /Sc is of the most importance. The
function f, depends on the boundary condition. It is
therefore worthy of comparing the condensation rates
of different binary mixtures under the same boundary
conditions. Figure 4 shows the theoretical results of
Kotake [8] for a pipe flow of constant cross-section at
a velocity of Uy, = 0.10ms™! and different cooling
temperatures. In Fig. 4, A, is not included in the
coordinate while in Fig. 5 it is taken into account. In
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Mixtures 50°C | Ty °C [Lao S8}
Ewt 35 | 90 10
EW2|} Ethanoi- Nater 90 | 85 0
Ew3 & | 8 10

Methanol-Water 90 | &

Acetone -Water 90 | &

Ethano!-Methanol

ReSc

m
(XA

Fi1G. 4. Condensation rate of different binary mixtures for
different wall temperatures.

the latter, the curves are seen to be more coalesced. The
discrepancies found in the figure arise from the differ-
ence of the development process of flow which is
largely affected by the inlet condition. It is seen in the
figure that some shift of the curves with respect to the
x-parameter shows well correlated behavior.

8. CONCLUSIONS

Film condensation of binary vapor mixtures is
studied on the basis of similarity consideration to
obtain its general features. Film condensation of
saturated one-component vapors is largely controlled
by the removal mechanism of heat released at the
liquid-vapor interface. On the contrary, film conden-
sation of two-component vapor mixtures is mainly
governed by the removal mechanism of mass caused
by the difference of equilibrium concentrations at the
interface. At the liquid—vapor interface of infinitesimal
thickness where the mixture is in phase equilibrium,
the liquid and vapor phases are subject to different
equilibrium concentrations. The behavior of mass
removal is characterized by the ratio A,, equation
(27), of the driving force of diffusion due to con-
centration difference between the interface and the
bulk to the barrier force of the difference of equilibrium
concentrations between the liquid and vapor phases.

X1
R, ReSc
F1G. 5. Condensation rate of Fig. 4 divided by A,, equation
7.




1416

Although the equilibrium characteristics are inherent
to the mixture, this mass removal factor can be
regarded as a significant similarity parameter for film
condensation of binary vapor mixture.

By examining the governing equations and the
corresponding boundary conditions nondimensional-
ized with the reference values, the similarity conditions
are obtained for binary mixture flows of film conden-
sation and compared with those for the one-
component system. Inspection of the interfacial tem-
perature by introducing the reference temperature at
the interface shows that the film thickness and the film
velocity are to be of smaller values than those for the
equivalent one-component film condensation. The
nondimensionalized film thickness for binary mixtures
is proportional to 0.5-0.33 of the power of the flow
length, while that for one-component vapors is pro-
portional to 0.25 of the power of the flowlength. The
condensation rate as well as the characteristic proper-
ties of the flow such as the film thickness, the film
velocity and the vapor velocity are expressed in terms
of the similarity parameters for forced flows and
natural convection flows in ducted walls and along a
plate. The obtained similarity is compared with a
numerical result to show well correlated behavior,

S. Kotakt and K. OSWATITSCH

although further comparisons with experimental re-

sults are required.
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PARAMETRES DE CONDENSATION EN FILM D'UN MELANGE BINAIRE

Résumé—En ce qui concerne Pécoulement du film liquide, la condensation en film d’un mélange binaire est
semblable en de nombreux points a la théorie de Nusselt. La chaleur est évacuée par le film seulement. De
plus, prend place un mécanisme de diffusion dans Iécoulement saturé gazeux. Il cause le transport du
composant le plus volatil du mélange dans la direction opposée a I'interface. Malgré le grand nombre de
groupements sans dimension, seuls quelques parameétres sont essentiels pour caractériser I'écoulement. Des
mélanges binaires trés différents sont comparés. Dans cette étude, on ne considére que des écoulements
laminaires sur une plaque plane et entre des parois paralléles, mais la discussion des paramétres essentiels
doit étre d’une portée générale.

PARAMETER BINARER FILMKONDENSATIONSGEMISCHE

Zusammenfassung—Die Filmkondensation bindrer Gemische zeigt betreffs des Fliissigkeitsfilmes starke
Ahnlichkeit mit der Nusseltschen Theorie. Durch den Film allein erfolgt die Warmeabfuhr. Dazu tritt aber
noch ein Diffussionsprozef in dem als strémend angenommenen geséttigten Gas. Er muf den Abtransport
der fliichtigeren Gemischkomponente von der Phasengrenze besorgen. Trotz der Fiille der Kennzahlen sind
nur einige wenige Parameter fiir den Vorgang wesentlich, so daB Prozesse sehr unterschiedlicher binirer
Gemische miteinander vergleichbar werden. In der Arbeit werden nur die laminaren ebenen Strémungen an
einer Platte und zwischen parallelen Winden untersucht, doch diirfte den wesentlichen Parametern weit
allgemeinere Bedeutung zukommen,

MAPAMETPHI [TJIEHOYHON KOHJIEHCALMW BUHAPHOW CMECH

Annorauns — TeueHne KHIKON NIEHKH NPH NIEHOYHON XOHACHCAMA GHHAPHON CMECH MOXHO J0CTa-
TOYHO TOMHO OMHCATh ¢ nOMoOIBIW TeopHH Hyccensta. Or16op Temna OCYIIECTBJNETCH TOJIBKO
nnenkoii. Kpome Toro, B noToke HaCHULUEHHBIX NAPOB MPOHCXOAMT AHPQY3HN, BLIIBIBAIOWAS NEPEHOC
Gotee neTyyeill KOMIOHEHTbI CMECH B CTOPOHY OT rpaHMubl paziena. Hecmorps Ha Hanmume G0Mb-
woro 4ucna Ge3pasMepHBbIX NAapaMETPOB, TOJNBKO HEKOTOPHIE M3 HMX MOFYT HCHOJR3OBATLCS AJA
xapakTepHCTHKH noToka. C HX NOMOIMIBIO MOXHO NPOBOOMTH CPAaBHHTE/bHBIH aHANH3 NIPOLECCOB
C YHaCTHEM CaMbiX pa3/iWyHbix OuHapueix cmecelt. B namnoit pabGorte paccMaTpHBalOTCE TOJBKO
NIaMHHAPHBIC TEYEHHS Ha MJOCKOH NNACTHHE H MEXAY NapajuiebHBIMH CTCHKAMHM, OIHAKO MpOBe-
JEHHBIA aHAHM3 BaXKHeHIIMX NapaMeTPOB NpPOLECCa MOXKET NMpeAcTaBiIaTh GoJiee IHHPOKHH HHTEpEC.



