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mass fraction of volatile species; 
specific heat at constant pressure; 
binary diffusion coefficient ; 
Grashof number ; 
acceleration of gravity; 
Stefan number ; 
enthalpy ; 
nondimensional parameter, equation (38); 
thermal conductivity; 
length of the cooled wall; 
molecular weight of species i; 
rate of condensation per unit area; 
Prandtl number ; 
pressure; 
half width of duct; 
Reynolds number ; 
Schmidt number ; 
temperature; 
characteristic velocity components; 
axial and normal velocity components; 
characteristic lengths; 
axial and normal coordinates. 

Greek symbols 

B9 Boussinesq factor; 
I-, dimensionless concentration, equation (42) ; 
4 condensate film thickness; 
A, = {C,(T) - C,(To)}I{C,(T) - ‘%T)J, 

equation (27); 
8, dimensionless temperature, equation (6); 
i 9 latent heat of vaporization; 

A dynamic viscosity ; 
V, kinematic viscosity; 

P9 density. 
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Abstract-As far as the flow of the liquid film is concerned the film condensation of a binary mixture is similar 
in many aspects to the Nusselt theory. The heat is removed by the film solely. In addition there takes place a 
diffusional process within the saturated gas flow. It causes the transport of the more volatile component ofthe 
mixture in the direction away from the interface. Despite the large number of dimensionless groups only a 
few parameters are essential for the characterization of the flow. As a consequence processes involving very 
different binary mixtures may be compared. In the present study laminar flows at a flat plate and between 
parallel walls are considered only but the discussion of the essential parameters should be of more general 

importance. 

NOMENCLATURE Subscripts 

e, phase equilibrium; 

;, 
liquid-vapour interface; 
center of duct; 

I, reference value ; 
W, wall ; 

1, 2, species. 

Superscript 

-9 condensate. 

1. INTRODUCTION 

WHEN a saturated vapor is introduced onto a suf- 
ficiently cooled wall, the condensate will be formed 
adjacent to the surface of the wall, flowing downward 
along the wall under the action of gravity. Usually, the 
condensate is removed by making use of the gravity 
flow along vertical walls, being an important device in 
the chemical engineering field. The phases of the fluid 
at the liquid-vapor interface may be assumed to be in 
thermodynamic equilibrium. In the case of one- 
component vapor, the equilibrium temperature, hence, 
the temperature at the interface is a function of only the 
system pressure. The amount of condensation onto the 
wall is controlled only by the removal process of heat 
released due to condensation at the interface through 
the equation of energy. 

For binary mixtures, the equilibrium temperature is 
a function of species concentration as well as the 
system pressure. The equilibrium concentration in the 
phases will generally differ for each component. Re- 
moval of the volatile component increases or decreases 
the equilibrium temperature owing to the equilibrium 
characteristics of the mixture. Due to the concen- 
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tration difference, the liquid usually contains less of the 
volatile component than does the vapor. In order to 
maintain condensation at the interface, the volatile 
component of the vapor adjacent to the liquid must be 
removed from the interface. The process of mass 
transfer controls this removal, whereas the equilibrium 
temperature, hence, equilibrium concentration will be 
determined by the energy transfer process. Out of these 
two processes, which is the rate-controlling process 
depends mainly upon the equilibrium characteristics. 
When the equilibrium concentrations are highly sen- 
sitive to the temperature, the heat transfer will be the 
main process controlling the condensation. In most 
cases, however, the mass transfer may be the rate- 
controlling factor. 

The equilibrium characteristics inherently pertain 
to the mixture. As such characteristics proper to the 
system play an important role, its physical behavior 
tends to be less similar to those of other systems. Even 
for quite different equilibrium characteristics, how- 
ever, one can find some local similarities within 
certain limits of the parameter range. Thus, from the 
standpoint of application of the results as well as the 
understanding of the phenomena, it is worthwhile to 
examine the general behavior on the basis of the 
similarity concept. 

At high speeds of vapor flow, there occur large 
disturbance waves and ripples at the liquid-vapor 
interface in addition to the turbulence in the vapor 
flow itself. Furthermore, liquid droplets may be torn 
off from the liquid form and also be reentrained into it. 
At further higher speeds, the characteristic time of the 
flow becomes of matter in comparison with that of 
condensation relaxation. In the present study, apart 
from such highly complicated phenomena, similarity 
aspects are considered for film condensation of la- 
minar flows of binary vapor mixtures. 

Flow characteristics also are attributive to flow 
configurations. As for the configuration of vapor flows 
of film condensation to cooled walls, following systems 
are considered ; (1) forced flows in a ducted wall and on 
a non-ducted wall, and (2) non-forced flows in a ducted 
wail and non-ducted wall, Fig. 1. In the latter case, 
vapor flows will be induced by the natural convection 
due to density difference or by the shearing effect of the 
condensate flow. The latter effect will be found to be of 
little interest. In the present study, for simplicity, the 
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FIG. 1. Film flow at ducted and nonducted wall. 
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FIG. 2. Flow configurations. 

duct is assumed to be of parallel walls. For divergent or 
convergent walls, similar considerations may also be 
taken with slight modifications. These flow- 
configurations show different physical features to be 
characterized by their own physical scales and proper- 
ties [l-9], Fig. 2. 

2. GOVERNING EQUATIONS 

A saturated vapor mixture having the temperature 
T, and the mass fraction of the volatile component C, 
is introduced to a cooled wall located vertically, being 
parallel to the direction of gravitational acceleration, 
g. Distances from the start of cooling along the wall are 
measured in terms of the x-coordinate, distances from 
the wall are measured by the y-coordinate. Concerning 
the similarity consideration, axisymmetric cylindrical 
flows are equivalent to two-dimensional flows, hence 
only two dimensional cases are considered here. The 
corresponding velocity components in the x- and y- 
directions are denoted by u(x,y) and t’(x, y), re- 
spectively. The wall is cooled isothermally at a con- 
stant temperature T,. The vapor condenses onto the 
surface of the cooled wall and flows downward along 
it, having the velocity components ti, 0 and forming a 
thin layer of the thickness 8 (x). The superscript - 
refers to the condensate. 

As the characteristic lengths and velocities in the x- 
and y-directions of the vapor flow and the condensate 
flow, 

x, Y; u, v; 
x, r; i7, v; 

are chosen and the reference physical properties are 
denoted by subscript r. As for the x-coordinate, the 
same scale may be used for the vapor and condensate 
flows 

x = X. (1) 

By nondimensionalizing the lengths, velocities and 
physical properties with their corresponding charac- 
teristic or reference values, it will be possible for them 
to assume values of the order of magnitude unity. The 
conservation equations of mass, momentum, energy 
and species will be written in the form of the boundary- 
layer approximation. In order to avoid unnecessary 
complications the physical properties ofthe fluids such 
as viscosity,conductivity etc. are assumed constant. Of 
course, the variable properties could also be taken into 
account, that is, being dependent on the temperature. 
In such a case the nondimensionalized quantities must 



be the same function of the nondimensionalized tem- 
perature in similar flows. With such assumptions the 
representation becomes more complicated with less 
increase in the essential information. 

In terms of the nondimensionalized variables the 
governing equations for the vapor are: 
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and 

p,v2/p, c 1,p,P2/p, << 1. (8) 

The uniform pressure across the flow passage of 
vapor and liquid, equation (3b), implies : 

PI = P,. (9) 

Inspection of equation (2) yields 

Z!&,$&l (10) 

which allow the derivates to be of the order of 
magnitude of unity. 

P, aP gx = ---+sp+g&$; (3a) 
p,u2 ax 

Although for the right hand side of equation (10) 
P = P(x); (3b) values near unity could also be taken, it would lead 

only to unnecessary complications. The main con- 
clusion is that the orders of magnitude of the different 
characteristic scales are not independent. It is simpler 

xv v i a28 d ac ae 
to fix them using equation (10). 

=_-__+l__; 

Yuvmay2 (4) With these conditions, the governing equations 
sc ay ay (2)-(S) can be reduced to: 

&Tuc) + =&UC)= zE_!a2c 
YU VY sc ay2 

where p is the density nondimensionalized by 
reference density p,, p the pressure reduced by 

(5) 
&PU) + gpu) = 0; (11) 

the 
$ (PUU) + g (PUU) 

the 
reference pressure pI, v the kinematic viscosity, c6 the 
difference of the specific heats of the species reduced by 
that of the mixture: CL = (cpl - c,,)/c, The Prandtl 
number Pr and the Schmidt number SC are 
respectively 

& be) + $ wv 

where cp is the specific heat of the mixture at constant 
pressure, p the dynamic viscosity, k the heat con- 
ductivity and D the binary diffusion coefficient of the 
volatile component. 

P,df; s,=; 

The nondimensional temperature 

V =- 1 a28 C; acae 
[ VY pray ---Y+ Gj-ay 1 ; (13) 

&UC) + Y&c) = &g$, (14) 

which now contain the nondimensional parameters of 
the vapor flow, 

VY gx p,v2 
CPl - 52 

Y’u2’ p, 
-, Pr, SC, c; = -. (15) 

(6) CP 

is defined in the same way both in the film and the 
vapor. The last term of the energy equation, equation 
(4), represents the energy transport due to the con- 
centration diffusion of species having different specific 
heats. In the present consideration, it plays no role in 
the film because heat conduction is predominant and 
no essential diffusion takes place. In the above equa- 
tions, the second order effects of thermal diffusion, 
kinetic energy, viscous and diffusion works and com- 
pressible heating are ignored. A system of equations 
similar to equations (2)-(5) holds for the film flow with 
the variables X, j, u, u, p, 6 and C. 

As for the liquid flow a similar group of parameters 
is considered. Equations (1 l)-( 14) are differential 
equations of the second order with respect to y and 
require two relevant boundary conditions. 

3. BOUNDARY CONDITIONS 

At the cooled wall the no-slip condition of velocity 
and the temperature is assumed. Usually the wall 
surface is impermeable to both components of the 
mixture. These conditions give 

ae 
u=O,r?=O,CJ=O,-=Oaty=O. 

aj 
(lo) 

In order to apply the boundary-layer type equa- 
tions, it is required that 

(Y/X)2 << 1, (F/X)’ << 1 

On the vapor side, two cases of boundary layer 
conditions are considered, that of ducted walls and of a 

(7) non-ducted wall. For a ducted channel with walls 
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situated at y = 0 and y = 2R,/Y, where 2 R,, is the 
distance of the walls : 

au 
- = 0,; = 0,: = 0 at y = &,/I’. ay (174 

In the case of non-ducted walls, one can specify the 
vapor conditions at infinity as 

u=U0,f7=1,C=C0aty-+~. (17b) 

At the liquid-vapor interface, no transition layer 
from the vapor phase to the liquid phase is assumed. 
The interface between the liquid and the vapor has an 
infinitesimal thickness. The location of the interface is 
expressed as 

y = 6(x), j = F(x). (18) 

It should be noted that 6(x) # J(x), since the film 
ttrickness in the liquid and in the vapor is non- 
$mensionalized by the different characteristic lengths 
Y and Y, respectively. At the interface, the continuity 
condition of u-velocity and temperature gives 

UUi = Viii, (19) 

Bi = e,, (20) 

where subscript i refers to the liquid-vapor interface. 
The transport fluxes of mass, momentum, energy 

and species from the vapor to the interface have to be 
equal to these passing from the interface to the liquid 
plus additional contributions due to sources at the 
interface. 

Assuming in accordance to the boundary-layer 
condition equation (7) that 

(;d!)’ << l,(fdJ << 1, (21) 

the components of the unit vector normal to the 
interface can be approximated by: 

Y d6 
n:-xdx,+ 1. 

The mass flow components of the vapor are: 

PU PJJ, PV,V. 

The mass of vapor condensing at the interface per 
unit area and unit time, the so-called condensation rate 
i, is equal to the negative normal component of the 
mass flow. 

Y d6 
fi = pup,lJ~~ - pvp,v. 

The same consideration can be taken for the liquid. 
With equation (10) the following relation for the 
condensation rate at the interface is obtained : 

FIG. 3. Phase equilibrium diagram for ethanol-water mix- 
ture at atmospheric pressure. 

where the constant density of the liquid is assumed, p 
= 1. 

The condition that the frictional forces at the 
interface have to be continuous gives 

(23) 

The heat released by condensation at the interface 
must be carried away by heat conduction into both 
phases. The heat conductivity of the liquid is one order 
of magnitude greater than that of the vapor. Estimates 
show that the former will not be compensated by a 
greater temperature gradient in the vapor. Therefore 
the heat transport takes place almost in the film only. 
By denoting the latent heat of condensation of the 
mixture in the liquid as i, the boundary conditions for 
the heat transport at the interface can be given by 

(24) 

When as in the case of Fig. 3, the concentration of 
the volatile component Ci in the liquid at a certain 
temperature is smaller than the concentration Ci in the 
vapor, an apparent source of the volatile species arises 
at the interface. The difference (Ci - Ci) has to be 
carried away by diffusion. The diffusion in the liquid 
can be neglected in comparison with the diffusion in 
the vapor. 

This leads to the following boundary condition for 
the concentration : 

?qci - Ci) = - p,p@ L E . 

c > Y ay i 

(25) 

Equations (19), (20) and (22)-(25)give the boundary 
conditions at the interface. 

4. PHASE EQUILIBRIUM 

At the liquid-vapor interface, the mixture is as- 
sumed to be in phase equilibrium. An example of a 
phase equilibrium diagram is shown in Fig. 3 for 
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ethanol-water mixture at atmospheric pressure. The 
pressure changes in the vapor and therefore in the 
two-phase flow are practically of no significance in 
comparison with the temperature changes. The 
equilibrium diagram, Fig. 3 can therefore be taken for 
a constant pressure, i.e. p = po. The upper curve gives 
the equilibrium concentrations of the vapor phase, 
being denoted by C,(T), and the lower curve is that of 
the liquid phase, C’,(T). The liquid phase contains less 
of the volatile component than does the vapor phase; 
C’,(T) < C,(T). Since no-transition layer between the 
liquid and vapor phases is taken into account, the 
mixtures cannot take concentrations between C,(T) 
and C‘,(T), but only values of C,(T) and C,(T); 

ci = C,( T,), Ci = C,( Ti). (26) 

Thus, the vapor adjacent to the liquid must be stripped 
of the volatile component from the interface by the 
amount of ti[C,(Ti) - C,(T,)]. The removal of the 
volatile component is carried out by the diffusion 
process, equation (25). The latter may be motivated by 
the driving force of concentration difference between 
the interface and the bulk, [C,( Ti) - C,]. The conden- 
sation rate should then be correlated with the ratio of 
these concentration differences, which is an important 
factor to characterize the condensation process. The 
factor is denoted by 

A = C,(T) - C, 

C,(T) - C’,(T)’ 

A = C,(T%J - co 
w CAT,) - w-w)’ 

(27) 

The denominator means a barrier for condensation 
from the vapor to the liquid and the numerator implies 
a potential of the condensation. 

5. CONDENSATE FLOW 

Due to small density of the vapor compared with 
that of the liquid, the condensate layer has usually very 
thin thickness and small u-velocities. If the Reynolds 
number based on these properties is assumed suf- 
ficiently small the conditions of creeping flow are 
valid : 

PI’ ii8 89 
_ a 1, PrT cc 1, SC: << 1. 

v (2ga) 
V 

Hence the effect of convection terms in the governing 
equations of condensate flow can be neglected. This 
will be confirmed for the different cases later. 

Of equation (3a), only terms on the right hand side 
remain. The pressure term is very small in comparison 
with the gravity term, because the pressure gradient is 
the same as in the vapor. In non-ducted flows the 
pressure is practically constant and in ducted flows the 
pressure changes are of the order of magnitude of the 
dynamic pressure, that is 

P,g - 0. 

The ratio of the first term to the second on the right 
hand side of equation (3) for ducted flows is then 
approximately : 

(28b) 

which can be neglected in the present cases. For higher 
vapor velocities or in the case of divergent or con- 
vergent ducted walls, this estimation has to be re- 
examined. Within the approximations made in this 
paper it is not necessary to take into account the 
pressure term in the film flow. 

Thus equations (3) to (5) for the liquid are reduced 
to: 

(2W 

a%7 Pr ,aCaB 
ay2= - gpYjYIj; (29b) 

a2c 
~ = 0, 
aj2 (29~) 

which are subject to the boundary conditions at the 
wall and at the liquid-vapor interface: 

y=o:u=o,8=o,~=o; 
y = 8(x): u = u,, 0 = Bi, c = ci = C,(T[). (30) 

Equations (29) and (30) yield: 

(3lb) 

c = ci. (3lc) 

By these solutions, the boundary conditions at the 
interface, equations (23) to (25) are written as 

fi _!gp=“gJ au 
i 2uv jUY 0 ay i’ Pa) 

Ee, 1. 
_=--_.---------_; 
Y d To - T, Wb) 

(32~) 

In equation (32a) the gravity term is the most 
predominant in comparison with the right hand side 
for usual cases. Considering the order of magnitude for 
the terms of equation (31a) leads to 

&C 
i ’ (33) 

which combined with equation (10) gives: 

p=sy” 
VX' (34) 
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Equations (33) and (34) correlate the characteristic - - 
velocities (U, V) in the film to the characteristic lengths 

(X, ri. 
Integrating the equation of continuity for the liquid, 

equation (11) gives a useful relation for the y- 
component velocity. 

With the help of equation (31a) and (33), this gives: 

An insight into the film flow is now possible. In usual 
cases, the shear stress of the vapor at the interface, the 
right hand side of equation (32a) is very small com- 
pared with that of the liquid, that is, 

puy<<l --c- gur ’ (36) 

which will be checked later, when the vapor flow is 
more specified. By using equations (33) and (36), 
equations (32a) and (35) give the x and y component 
velocities of the liquid at the interface, equation (37a) 
and (37b) respectively. Further with equations (37a) 
and (37b), equations (22) and (32b) lead to equations 
(37~) and (37d) which give the condensation rate and 
the interfaciai temperature, respectively. 

1 
t& = - 6 ; 

2 
(37a) 

1 d6 i;= _-&T--; 
2 dx 

ni -&-2ds. 
p,p dx’ 

WW 

(37c) 

W-4 

where Re is the Stefan number defined by 

He = qT0 - Tw) 
3. 

and I(, is a characteristic parameter for the liquid 
defined by 

In the case of one-component condensation, the 
interfacial temperature can be regarded as one of the 
specified quantities of the system namely Bi = 1. In 
equation (37d) one can then put 

K,=F 

and solve equation (37d) to obtain ali the aspect of 
condensate flow - the Nusselt solution. On the other 
hand, for binary mixtures, the controlling rate is how 

much of the excessive vapor species can be 
removed from the interface between the vapor and 
liquid phases where the mixture is subjected to dif- 
ferent equilib~um concentrations. Thus, the vapor 
flow governs the condensation process mainly through 
its behavior of mass transfer, as seen later. Neverthe- 
less, it is convenient to introduce the parameter K, for 
the purpose of estimating the interfacial temperature 
as well as viewing a correlation between one and two 
component systems. By further introducing a reference 
temperature 0, at the interface so that 8, z Bi, equation 
(37d) is written as 

The reference temperature at the interface is then 
given by 

8, = g K,. (39) 

With the parameter &, the characteristic scales of the 
condensate flow can be expressed as 

p_y 114 
i7=1 f&l’4 - ! > g 

) D = K,Y2J(gx), 

v =I #;I4 z$ 

C ) 

114 

where Kr is given by the energy transfer relation, 
equation (38b), for the one-component system and by 
the mass transfer relation, equation (59), for the two- 
component system. 

The characteristic values given by equation (40) 
depend on the length of the film X and on the reference 
temperature at the interface 19,. For the saturated one- 
component flows 0, = 1, whereas for binary mixtures 
the reference quantities of the film, P, ii, P are smaller 
than these for one-component flows of the equivalent 
fluid under the same boundary conditions. 

For the creeping flow conditions (28a) one obtains 
from equations (38) and (39): 

iT -- --- z 

f 
&;Pr--W= K,Pr = Re, 6,; 

v 

As an example assume the properties of water To = 
393”,cr, = 1 calg-’ grad,?. = MOcalg-’ andcooling 
of T, - T, = 25”, then one gets f7e = 0.05. The 
Prandtl number at this temperature is relatively small 
pr = 2. The film parameter for the one-component flow 
(0,= 1) is then K, =0.025. Thus, the creeping flow 
conditions are satisfied for 0, = 1, hence more 
sufficiently for binary mixtures 0, < 1. Only the third 
condition (28) may cause difficulties for higher vapor 
velocities, see equation (60) and following, with respect 
to the high Schmidt numbers of liquids, (%/Pr 



N 300/2 = 1.50). But even if the third creeping con- 
dition (28a) and equation (31~) are not fully satisfied, 
the concentration gradient in the film is small in any 
case and can be neglected in the boundary condition 
(32~) and consequently drops out of consideration. 

Assuming a reasonable value of G = 0.3 x 
10d6 m-2 s- i (f.e. water at 100°C) and a length of X = 
0.10 m equation (40) gives for the one-component flow 
of water p = 0.7 x 10e4m and 17 = 0,16ms-*. As 
already known from Nusselt theory the liquid film is 
very thin and quite slow. This is important for the 
boundary conditions of the vapor flow. 

6. VAPOR FLOW 

For the vapor flow, the condition of small Reynolds 
numbers such as equation (28a) is too restrictive to 
obtain the general feature of the problem. Usually it is 
necessary to solve the Ml set of governing equations, 
equations (1 l)-( 14). 

The natural convection term in equation (12), 
pgX/U’, can be attributed mainly to the local vari- 
ation of density due to temperature and concen- 
tration differences. When the variation is not too large, 
the effect is expressed by exp~ding the density about 
the reference state with respect to temperature and 
concentration according to Boussinesq’s 
approximation : 

p=l+ dp 0 a0 
(0 - 0,) 

p.C*r 

aP + z p,@.r 0 (C - C,) + . . . . 

For low Mach number flows, the influence of the 
pressure change in the gravitational term can be 
neglected in comparison to that of the density. From 
the equation of state of an ideal gas the following 
relation can be easily found 

The molecular weight of the mixture of two perfect 
gases is given by the relationship 

1 I-C -.._=_ +-:- 
In ml m/2’ 

2 (PU) + ; (P4 = 0; 

where m2 is the molecular weight of the volatile 
component. 

This gives 

where m, is the molecular weight for the reference 
concentration C = C,. 

It is convenient to introduce for the concentration a 
similar variable as for the temperature, equation (6): 

which takes values between 0 (at the wall) and 1 (in the 

free stream). Substituting these expressions of ++.?@ 
and ap/aC into the expansion of p with T, = T, 
(0, = 1) and C, = C, (r, = 1) gives 

p-l= ??+(I _ 0) 

0 

+ 
m2 - ml 
~ m,[C,(T,) - C&l - r) + . . . 

4 m2 

= pt( 1 - 0) + p,( 1 - r) + . . . ; (43) 

The Boussinesq factor for the concentration, fl,, 
takes under certain conditions (Table 1) values of the 
order of magnitude unity. In such cases considerable 
changes of the vapor density will be associated with 
this and fi, becomes a significant parameter of the flow. 

The static pressure gradient in equation (12) is given 
by the relation: 

Eiip,=gx. 
P, ax 

If the pressure of the vapor is measured as the 
difference from this static pressure caused by gravity, 
p,, namely p’ = p - ps, the equation of motion 
equation (12) is written as 

P, api = --- 
pJJ2 ax 

+$(p_l)+L_ci’u 
VY ay2’ 

In this equation of boundary-layer type, the con- 
vective terms and the friction term are to be of the same 
order of magnitude, that is, 

VY 
-= 1. 

V (4) 

By introducing the new variables r and p’ with 
equations (43) and (44), the system of equations 
(llf-(14) for the vapor Row is reduced to 

(454 
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r = _C- C,(TJ C,(T,) - C 
(42) 

ar ae 
co - Co-WI C,Vw)- co' x Pay&i (45c) 
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Additionally it should be noted that the density is 
given by equation (43). 

The boundary conditions at y = Ro/Y or y = cx, 
equation (17a) or (17b), can easily be written in terms 
of the reduced quantities. Before formulating the 
boundary conditions for the vapor at the interface, the 
condition which specifies the type of flow, namely of 
forced convection, natural convection and of shear 
induced flow will be considered. 

Natural convection has to be of significance, if the 
relevant terms in equation (45b) are of the same order 
of magnitude that is, 

In this equation, @can be replaced by the Boussinesq 
factor 8, for the predominant influence of the tempera- 
ture or by 8, for that of the concentration, equation 

(43). 
For a binary mixture of water-ethanol (mi = 18, 

m2 = 46) at atmospheric pressure and a saturation 
temperature of To - 273 = 95”C, one gets C, = 
C,(T,) = 0.35, m0 = 28.8. This gives the values of the 
factor for various wall-temperatures shown in Table 1. 

It is seen from Table 1 that binary mixtures of 
species having a great difference of molecular weight 
take considerable large values of & According to 
equation (46), the characteristic reference velocity for 
natural convection in the vapor is given by 

U= J(w), (47) 

where p is the largest one between p, and &. Vapor 
flows induced by the shear stress of the condensate 
flow are possible only if it overwhelms natural con- 
vection, that is, U >> J@gX). In view of the second 
equation (40), this means 

which is rarely realistic. Therefore, the case of shear- 
induced flows can be excluded from the present 
consideration, as mentioned in the introduction. 

In usual cases of forced flow or natural convection, 
one can find U << U. The vapor velocity is then 
assumed to vanish at the interface. For forced flows, 
the characteristic velocity of the vapor is chosen as 

U = u, (49) 

where U,, is the specified velocity at the inlet of ducted 
walls or the free stream velocity of the flow along the 
plate. Thus, pure forced convection can be assumed 
only if: 

K+!O= J( > pgx cc 1 ------- . 

UO u,: 
(50) 

For small values of 8, I<, << 1, that is, natural 
convection in the vapor can be negiected. If K, is of 
order of magnitude unity, natural convection becomes 
comparable with the forced flow. In this case, it may be 
significant whether the vapor flow is directed to or 
against the direction of gravity. 

In the foIlowing, for the vapor flow specified, two 
cases will be considered; (a) forced flow, K, c 1, and 
(b) natural convection flow, K, >> 1. In each case, two 
types of the flow configuration are considered; (1) 
ducted flow and (2) non-ducted free flows. For ducted 
flows, the characteristic length Y can be taken as the 
magnitude of R, ; (1) Y = R,. For free flows along a 
plate the order of magnitude of X can be considered 
the length of the plate L; (2) X = L. The combined 
configurations of vapor flow are listed in Table 2. 

If V is eliminated from equations (10) and (44) one 
gets : 

Y-2 1, 
1 r 

- = -, 

x u 

With these relations in Table 2 and of equation (Sl), 
the characteristic quantities, X, Y, U can be easily 
calculated as shown in Table 3. 

In the case of forced flows the Reynolds number 

ReR = UoRojv or ReL = U&Jv 

appears in the expression of unspecified characteristic 
lengths. For natural convection the Grashof number 

Gr, = ~gR~Jv2 or Gr, = ~g~3~v~ 

appears. It may be practically of advantage to in- 
troduce the Grashof number in the relation for U in 1 b. 

For ducted flows, a certain starting length XL exists 
over which the boundary layer on the walls grows to 
occupy half the duct width. In contrast to free flows 
along a plate, the velocity at the center increases axially 
owing to the displacement effect of the boundary 
layers. Nevertheless XL can be estimated quite well by 
putting Y equal for the ducted and for the free flow. 
With L = XL one obtains, for forced and natural 
convection flows respectively, 

In the present case, both the Reynolds number and the 
Grashof number based on R, are large. This means 
that the flow in the starting length X, is of importance 
for ducted flows. At the same time it means that the 
condition (7) for the vapor is satisfied already at the 
starting length XL, and hence is better for the region in 
greater lengths of the duct. 

For free flows, one gets from Table 3 : 

(a2) i = & 
112 c ); Y v2 1‘4 

0 
(b2) z = jp, 

( j 

(53) 
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Table 1. Boussinesq factors and A,, equation (27), for water-ethanol mixture 

1413 

T, - 273 C,(T,) CC,(T,) - co1 8, 8, CVw) CW’,) - CO-w,1 Aw 

95 0.35 0 0 0 0.06 0.29 0 
90 0.56 0.21 0.200 0.014 0.14 0.42 0.50 
85 0.70 0.35 0.340 0.027 0.31 0.39 0.90 
80 0.83 0.48 0.420 0.041 0.71 0.12 4.00 

._ --. 

Table 2. Vapor-flow configurations 

(I) Ducted 
(2) Free 

(a) Forced (b) Natural 
u = u, u = &%X) 

Y = R. al 
X=L 02 i: 

Table 3. Characteristic quantities of the vapor flow 

(1) Ducted 
(2) Free 

X 

RoRe, 

L 

(a) Forced 

Y X 

R&r, 

L 

(b) Natural 

Y u 

J(BsRoF@ 

LG:; 1 ‘4 plL) 

where the Reynolds number and Grashof number are 
based on L. Assuming that v = 0.2 x lop4 mz s- ‘, U, 
= lOms_‘,L =O.lOm,~=0.20m,g = 10ms-2,0ne 
gets for the two cases, respectively 

(a2) Y/L = 0.50 x lo-‘; (b2) Y/L = 2 x 10m2. 

Also in this case the condition (7) for the boundary- 
layer type flow is satisfied. 

A comparison of Y with P(the latter was calculated 
on the end of the last chapter to ? = 0.7 x 10v4 m) 
shows that, only for Reynolds numbers near the 
critical value, the boundary layer thickness of the 
vapor flows can become comparable with the thick- 
ness of the film layer. In that case the ordinate y of the 
vapor may be measured from the interface. In general, 
however Fcan be neglected against Yin the vapor. The 
boundary condition for the vapor flow at the interface 
can then be given simply by 

y=o:u=u=o. (54) 

Since for ducted flows, F/R,, cc 1, the boundary 
condition equation (54) is a very good approximation. 

With equations (27) and (42), equation (32~) is 
reduced to 

. PrPiv Aw Ce(Tw) - ce(Twf 
RI = Y xi- Ce(Ti) - C,(Ti) (55) 

where A, is an important parameter of concentration 
given by equation (27) at the wall temperature T, and 
SC is the Schmidt number of the vapor. The ratio of 
concentration differences at the wall and the interface 

(56) 

usually takes values close to unity as shown in Fig. 3. 

7. CONDENSA~ON RATE AND I~ERFA~E 
TEMPERATURE 

A comparison of the condensation rate expressed by 
the properties ofthe film flow, equation (37c), with that 
expressed by the properties of the vapor flow, equation 
(55) and (56), leads to 

;F2E=;&2Q)i g- . . ( ) (57) 
I Y I 

In usual cases of practical importance, the interface 
temperature is very close to the wall temperature, or in 
other words, 8, the reference value of &, is quite small, 
Qwi z 1. Estimate of the order of magnitude of the 
terms in equation (57) leads to 

P, v Aw 
p, VY SC 

1 

I 

which gives the order of magnitude of i? Using 
equation (40) for V and equation (51), the parameter 
K, can be expressed by the fluid properties and the 
vapor-flow condition as follows : 

K, = (;$)‘;‘(;-” @“. (59) 

The flow parameter in equation (59) U’jgX is listed 
in Table 4 for each flow configuration. 

By equations (40) and (59) with the value of U’/gX 
in Table 4 and Table 3 the characteristic values of the 
condensate flow, x u and Pare obtainable (Table 5). 
The reference temperature at the interlace is delined by 
equation (39) so that t7, x @, can be then given by 

8, = s -_ ;(;>“‘(s>,!, (!?y”. (60) 
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Table 4. Flow parameter U’/yX 

(a) Forced (b) Natural 

(1) Ducted 
(2) Free 

Table 5. Characteristic properties of condensate flow 

(a) Forced (b) Natural 

(1) Ducted p 

0 

Aw p Gr 1 ” 

i-----l ,,Sc fi Gr, 
RO 

2’3 

(2) Free 

With the same values as for the example following 
equation (41), Re = 0.05 ; Pr = 2 and reasonable 
values P,/p, = 1.6 x 10’; v/V = 80; A,,&% = 1, one 
gets : 

(J2 I,'3 

8, = 4 x 1o-2 --- c ! . 

This means that for forced flows at a plate of the length 
L = 0.10m and U. = lOOms_‘, 0, will no longer be 
small. But this is flow near the critical Reynolds 
number, which requires further special consideration. 
As shown by Kotake [S], 8, will be small in general. 

Small values of@, mean that the condensation rate is 
dominated by the diffusion process in the vapor and as 
a consequence the condensation rate will essentially be 
smaller than that for one component flows with the 
same cooling condition. Substituting equation (58) 
into equation (57) with Qwi = 1, (0, << 1) leads to 

It implies that the film thickness bfor binary mixture 
condensation should be controlled by the concen- 
tration gradient at the interface. This is the most 
contrasting feature to that for one-component con- 
densation. In the latter, the film thickness is governed 
by equation (37d) with equation (38b) 

For free laminar flows along a flat plate, (%/a~~) : h 
Jx. From equation (61), $ _ ,/x. When (Z/8y) = 
constant, as in the case offully developed ducted flows, 
8 - “Jx. On the other hand for one component flow, 

oi = 1, the above equation leads to b _ “Jx, which is 
the result of the Nusselt film theory. 

Strictly speaking, the concentration gradient at the 
interface is a function of the x-coordinate, the Schmidt 
number SC and the interfacial temperature 0,. The 
latter involves the parameter 0, = i%K,/Be. Thus, the 
gradient can be expressed in the form 

In the case for small difference between wali and 
interface temperatures, 8, << 1, hence according to 
equation (39) l%K,/R z 0, the concentration gradient 
can be evaluated at the wall temperature and at y = 0. 

With equation (55) and Table 3 one can obtain the 
following expressions of the condensation rate in ni/pP 
for four different cases of flow configuration. 

la. Ducted wall,forced conoection 

dx 
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X' 

X=R,. (63) 

where the vapor density can be evaluated at wall 
temperature (0 = 0, I = 0) according to equation 
(43) : 

Pw = 1 + P, + 8, 

and can be quite different from one, Table 1. 

lb. Ducted wall, natural convection 

niR, SC ni 
--= 
P,V 4v 

Grl’2 f 
p,x/WW w 

= Pwf, (xr SC); 

&!!$; 

X' 

X=R,Gr. 

2a. Free (plate), forced convection 

= 25Re’12; 
PJ, w 

= p,f+ (x9 SC); 

Re=U,L; 
V 

2b. Free (plate), natural convection 

V2 rnL __ 3 > 1’4 SC 

PIV BC?L3 u=& 
f3.“4” 

w 

= P,fti (x9 SC) ; 

(64) 1 

FIG. 4. Condensation rate of different binary mixtures for 

(65) 

the latter, the curves are seen to be more coalesced. The 
discrepancies found in the figure arise from the differ- 
ence of the development process of flow which is 
largely affected by the inlet condition. It is seen in the 
figure that some shift of the curves with respect to the 
x-parameter shows well correlated behavior. 

(66) 

(67) 

Film condensation of binary vapor mixtures is 
studied on the basis of similarity consideration to 
obtain its general features. Film condensation of 
saturated one-component vapors is largely controlled 
by the removal mechanism of heat released at the 
liquid-vapor interface. Gn the contrary, film conden- 
sation of two-component vapor mixtures is mainly 
governed by the removal mechanism of mass caused 
by the difference of equilibrium concentrations at the 
interface. At the liquid-vapor interface of intInitesima1 
thickness where the mixture is in phase equilibrium, 
the liquid and vapor phases are subject to different 
equilibrium concentrations. The behavior of mass 
removal is characterized by the ratio AW, equation 
(27), of the driving force of diffusion due to con- 
centration difference between the interface and the 
bulk to the barrier force of the difference of equilibrium 
concentrations between the liquid and vapor phases. 

In the case of forced convective flows (la) and (2a) 
the Reynolds number Re is involved in the factor of the 
condensation rate. For natural convection flows (lb) 
and (2b), the Reynolds number is replaced by the 
Grashof number Gr. The factor includes the para- 
meters as a product, and they form a new parameter. 
The parameter, A,,,/Sc is of the most importance. The 
function fti depends on the boundary condition. It is 
therefore worthy of comparing the condensation rates 
of different binary mixtures under the same boundary 
conditions. Figure 4 shows the theoretical results of 
Kotake [8] for a pipe flow of constant cross-section at 
a velocity of U,, = O.lOm s-r and different cooling 
temperatures. In Fig. 4, A,,, is not included in the 
coordinate while in Fig. 5 it is taken into account. In 

different wall temperatures. 

8. CONCLUSIONS 

007 Of 

x , 
4 Rdc 

FIG. 5. Condensation rate of Fig. 4 divided by A,, equation 
(27). 
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Although the equilibrium characteristics are inherent 
to the mixture, this mass removal factor can be 
regarded as a significant similarity parameter for film 
condensation of binary vapor mixture. 

By examining the governing equations and the 
corresponding boundary conditions nondimensional- 
ized with the reference values, the similarity conditions 
are obtained for binary mixture flows of film conden- 
sation and compared with those for the one- 
component system. Inspection of the interfacial tem- 
perature by introducing the reference temperature at 
the interface shows that the film thickness and the film 
velocity are to be of smaller values than those for the 
equivalent one-component film condensation. The 
nondimensionalized film thickness for binary mixtures 
is proportional to 0.5-0.33 of the power of the flow 
length, while that for one-component vapors is pro- 
portional to 0.25 of the power of the flowlength. The 
condensation rate as well as the characteristic proper- 
ties of the flow such as the film thickness, the film 
velocity and the vapor velocity are expressed in terms 
of the similarity parameters for forced flows and 
natural convection flows in ducted walls and along a 
plate. The obtained similarity is compared with a 

numerical result to show well correlated behavior, 

although further comparisons with experimental re- 
sults are required. 
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PARAMETRES DE CONDENSATION EN FILM D’UN MELANGE BINAIRE 

R&m&-En ce qui concerne l’&coulement du film liquide, la condensation en film d’un melange binaire est 
semblable en de nombreux points d la thBorie de Nusselt. La chabur est &act&e par le film seulement. De 
plus, prend place un mCcanisme de diffusion dans l%coulement saturt gazeux. II cause le transport du 

composant le plus volatil du m6lange dans la direction oppos& i l’interface. Malgr6 le grand nombre de 
groupements sans dimension, seuls quelques parambtres sont essentiels pour caractkriser Wcoulement. Des 
mtlanges binaires t&s diffhrents sont comparb. Dans cette 6tude, on ne considire que des 6coulements 
laminaires sur une plaque plane et entre des parois paralliles, mais la discussion des param6tres essentiels 

doit &re d’une port& g&-&ale. 

PARAMETER BINjiRER FILMKONDENSATIONSGEMISCHE 

Zusammenfassung-Die Filmkondensation biniirer Gemische zeigt betreffs des Fliissigkeitsfilmes starke 
jihnlichkeit mit der Nusseltschen Theorie. Durch den Film allein erfolgt die Warmeabfuhr. Dazu tritt aber 
noch ein DiffussionsprozeB in dem als striimend angenommenen geslttigten Gas. Er mul3 den Abtransport 
der fl~chtigeren Gemi~hkom~nente von der Phasengrenze besorgen. Trotz der Fiille der Kennzahlen sind 
nur einige wenige Parameter fiir den Vorgang wesentlich, so daO Prozesse sehr unterschiedlicher bingrer 
Gemische miteinander vergleichbar werden. In der Arbeit werden nur die laminaren ebenen StrGmungen an 
einer Platte und zwischen parallelen W&den untersucht, doch diirfte den wesentlichen Parametern weit 
allgemeinere Bedeutung zukommen. 

I-IAPAMETPbI IlJIEHOYHOR KOH,!?EHCAIIMM BMHAPHOfi CMECM 

Awnrraua~ - Telenne XH~KOR nneXKH npn nnenoqHoi3 xonnencaumn Butrapnoii CM~CH MOXHO xocya- 
TO’~HO ~0~0 OnHcaTb c nobody TeopHH HyoXnbTa. 0~60~ Tenna ~ym~~~n~~c~ TOnbYO 
nneeroii. KpoMe TOGO, B noToKe Hacbrmemibtx napoe npoxcxonHT LIH@+~~UR, abi3bnwouw4 nepeHoc 
6onee nerygeii KohmoHeHTbI cbtec~ B CTOPOHY 0’1’ rpaiiwbl pa3nena. H~CMOTPR Ha HanwHe 6onb- 

mar0 wcna 6e3pa3Mepwx napahierpos, TOJIbKO HexoTopble H3 HHX MOUNT HCrlOJlb30BaTbCR nJIr 

XapaKTepHCTWKH nOTOK&. c HX nOMOilJ,bto MOXCYHO npOBOlWTb CpaBHHTeJIbHbIfi aHaJIU3 n&JOIWCCOii 

c yrac-rneh+ caMbIx pa3nH’Imdx 6~apH~x chlecek. B JWHHOk pa6oTe ~CcMaTpH~~~~ TOnbKO 

nahfmiapfible Teqemiff ifa nnoc~ofi nnacTmie x hfewy napanneJIbwri+sH cTeHKaMH, omaK0 npoBe- 

nesabtic aHanH3 aamHeihuHx napaMeTpoa npowcca MozueT npencTaanrTb 6onee umpomifi miTepec. 


